
1

HONOURS PROJECT REPORT

Procedural Leaf Generation Using
Biologically-Motivated Algorithms

Donovan Foster

Supervised by:

A/Prof James Gain

 Category Min Max Chosen

1 Requirement Analysis and Design 0 20 5

2 Theoretical Analysis 0 25 5

3 Experiment Design and Execution 0 20 0

4 System Development and Implementation 0 15 15

5 Results, Findings and Conclusion 10 20 10

6 Aim Formulation and Background Work 10 15 15

7 Quality of Report Writing and Presentation 10 10

8 Adherence to Project Proposal and Quality of Deliverables 10 10

9 Overall General Project Evaluation 0 10 10

Total Marks 80 80

2

ABSTRACT
The aim of this project is to improve on the realism of 3D trees generated by an existing system. The

current system lacks any leaf creation or foliage placement ability and therefore a method must be

found to create, realistic, procedural trees, whiles still holding true to the previous system’s goals of

usability and sketch-based design, as well as the ability to create more than a single object for one

set of input parameters. This thesis solves this problem by examining the different shape, texture

and venation techniques available, and choosing those that fit the criteria. Specifically, this thesis

discusses a system with a sketch-based leaf outline definition, using biologically motivated

algorithms to grow veins out into the leaf, and well as colouration based on biological colour values

and patterns. The leaves are then placed on a tree using a foliage system designed from

observations of leaf behaviour in deciduous trees.

ACKNOWLEDGEMENTS
I would like to take this opportunity to thank all of those who have helped me on this project,

particularly my fellow project members Richard Pieterse and Ryan Mazzolini, and of course, our

supervisor A/Prof James Gain, for his unlimited patience and guidance.

3

CONTENTS
Abstract ... 2

Acknowledgements ... 2

List of Figures .. 5

Introduction .. 6

1.1. General Procedural Generation ... 6

1.2. Biological Definitions .. 8

1.2.1. Terms describing leaf shape .. 8

1.2.2. Growth Types ... 8

1.2.3. Growth Hormones and Pigmentation ... 9

1.3. Previous system .. 9

1.4. System Overview .. 9

1.4.1. Mesh Generation and Surface Subdivision .. 10

1.4.2. Texture synthesiser .. 10

1.4.3. Leaf generation modules ... 11

1.5. Research Question ... 11

1.6. Novel contributions .. 11

1.7. Thesis Structure .. 12

2. Leaf Texture Creation .. 12

2.1. Introduction .. 12

2.2. Background ... 12

2.2.1. Shape Definition .. 13

2.2.2. Leaf Venation ... 15

2.2.3. Colouration .. 17

2.3. Design and Implementation ... 19

2.3.1. Process Flow Diagram .. 19

2.3.2. User interface .. 19

2.3.3. Shape Creator .. 19

2.3.4. Parameters .. 21

2.3.5. Leaf Venation .. 21

2.3.6. Texturing ... 25

3. Leaf Mesh Creation and Placement ... 26

3.1. Introduction .. 26

3.2. Background ... 26

4

3.2.1. Leaf Mesh Generation ... 26

3.2.2. Foliage Creation ... 26

3.3. Design and Implementation ... 27

3.3.1. User interface and parameters .. 27

3.4. Foliage Creation .. 27

3.4.1. Placement .. 27

3.4.2. Saving to file .. 27

4. Testing ... 28

4.1. Performance Testing .. 28

4.2. Results .. 29

4.2.1. Venation .. 29

4.2.2. Texturing ... 30

4.2.3. Foliage ... 30

4.2.4. Full Render of leaves compared to real leaves ... 31

4.3. Conclusion .. 31

4.4. Experimental Errors .. 32

5. Conclusion ... 32

6. Future Work ... 32

7. References ... 34

Appendix ... 1

A. User Interface ... 1

A.1. Sketch Interface .. 1

A.2. Parameter Selection Interface.. 1

A.3. Foliage Creation Interface .. 3

B. Explanation of Parameters .. 4

B.1. Texture Parameters .. 4

B.2. Growth and Venation Parameters .. 4

B.3. Colouration and Texturing Parameters .. 7

C. Sample Files .. 9

C.1. Sample .MTL file ... 9

5

LIST OF FIGURES
Figure 1: Simple L-System with axiom (Ώ) and production rules (left) and result (right) 6

Figure 2: 2D Tree from L-System (Left) and the L-System result (Right) .. 7

Figure 3: Terms relating to leaf shape (from Runions (2005)) .. 8

Figure 4: Growth Types (from Runions (2005)) .. 8

Figure 5: Auxin Growth toward root (Rodkaew et al, 2003) ... 16

Figure 6: Texture Creation Process Flow Diagram .. 19

Figure 7: User Drawn Sketch (left) and successfully loaded leaf (right) ... 20

Figure 8: Validated leaf (left) Validated interior only (centre) Validated with dividing line (Right) 21

Figure 9: Venation cycle .. 22

Figure 10 : Example of marginal vein growth ... 24

Figure 11: Front and back textures and bump maps .. 25

Figure 12: Test Leaf Outline .. 28

Figure 13: Growth types (Left to Right) Isotropic, anisotropic, marginal, none 29

Figure 14: Left to Right - From Edges (front texture), From Veins (back texture), Bump Map. Each

taken from a different leaf created with the same parameters, but with variation 30

Figure 15: Foliage Render ... 30

Figure 16: Red Maple Leaf Rendered .. 31

Figure 17: Brown Maple Render ... 31

Figure 18: Sketch Interface ... 1

Figure 19: Growth Parameter Panel ... 2

Figure 20: Colour Parameter Panel ... 3

Figure 21: Foliage Creation Interface .. 3

6

Introduction
With the current trend in increasing computer generated content in entertainment and science, the

need for content of this type far outstrips the supply. What is needed is a fast efficient way to make

trees that are realistic, but also shaped and coloured as you need them to be. Movies and games

often need more interaction with a tree that to just generate it, while scientists are often interested

in a specific case with very specific parameters.

As hard as it is to build one tree, it is next to impossible to make multiple trees that are clearly

related, and yet different and unique. This is where procedural generation and this project come into

play. This project aims to have a system where you can design a tree, from branches to bark and

leaves and then create that tree and others similar to it, without expert knowledge and without

tweaking parameters.

Luckily, trees are well suited to procedural generation, as they can be modelled accurately using a

sets of rules that govern their growth and behaviour.

1.1. GENERAL PROCEDURAL GENERATION

Procedural generation is a form of automated object creation. One can use simple rules and

parameters to create something much bigger and more complex. Trees are well suited to

procedural generation because they are too complex to be feasible by hand, and they are self—

similar and fractal in structure. This means that the general structure of large piece of the tree

(say the trunk) is echoed in its branches. This allows trees to be generated from just a few rules,

as they can be reused as needed at different scales. The most popular technique for modelling

tree structures is known as the parameterised L-System (Prusinkiewicz & Lindenmayer, The

algorithmic beauty of plants, 1991). L-Systems were developed by botanist A. Lindenmayer in

1968, and are a type of rule-based formal grammar. L-Systems are used extensively in all fields

of procedural generation.

A basic structure for an L-System grammar consists of an alphabet, a seed string, known as an

axiom, and a group of production rules. A production rule takes the form <target> ->

<replacement>, where the target is a string of members of the alphabet and replacement is

another such string. The process starts by making a string containing the axiom. At each time

step, the production rules are applied in parallel to the string. If the rule finds its target, it

replaces the target with its replacement.

Figure 1: Simple L-System with axiom (Ώ) and production rules (left) and result (right)

These L-Systems can be used to model trees if one uses each member of the alphabet to

represent a different action, for example moving forward or rotating. By this method, entire

7

trees can be built from just a few rules. Below is one such L-System for a 2D tree. 3D trees can

also be modelled, however the L-Systems are more complex.

Figure 2: 2D Tree from L-System (Left) and the L-System result (Right)

However, trees are not perfectly self-similar. To this end, variations of an L-System are typically

used. Stochastic L-Systems have many rules for the target each with a percentage chance. When

the target string is found, one of the rules is randomly picked based on its percentage. This helps

create unique trees. Another possible alteration to L-Systems is conditional L-Systems, in which

each rule has can specify conditions about the string around its target that must be satisfied

before it is used. This can help prevent putting fruit of a tree before the end branches for

example.

PARAMETRIC

A term that arises frequently in procedural generation and this paper in particular is

“parametric”. To say that an object that is defined parametrically means that the data for the

object has been stored as a small amount of intermediate variable that can be extrapolated out

to regain the full object. For instance, a circle can be stored as a collection of points, or it can be

stored and a radius and a centre point. Using these two parameters, it is possible to regain the

original points of the circle. The advantages of storing object parametrically are twofold; Firstly,

the parameters generally take up less space than the original data, although that is not always

the case; and secondly, a slight change in the parameters can produce a similar, yet unique

object. This is the principle behind procedural variation in both tree structures and leaf

generation. This, of course, also depends on how similarity is defined. If a chosen parameter

contains a number representing a certain shape, changing that number will produce a different

shape, and thus a dissimilar object, however it would still be a shape, and share at least that

similarity.

RANDOMNESS

The concept of randomness plays a big role in procedural generation. Whilst the parameters of a

system constrain what outcomes are possible, random numbers allow the system to explore the

full range of those constraints. Procedural generation focuses on the creation of new and unique

objects, and thus it is not possible to store or hard-code that variation in. To do so would

undermine the principles of procedural generation. That is not to say that everything in

procedural generation is random. There are often occasions where the random data has to be

transformed to make sense in the system. The Dart-Throwing algorithm, as used by (Runions,

Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005), generates uniform random points

over an area. To do this, the random numbers generated are scaled over the area in question to

ensure they are valid.

8

1.2. BIOLOGICAL DEFINITIONS

This paper does not concentrate heavily on the biological definitions of leaves when explaining

the various algorithms inspired by nature, however, there are some specialised terms and

concepts that should be kept in mind as one reads this paper.

1.2.1. Terms describing leaf shape

Figure 3: Terms relating to leaf shape (from Runions (2005))

1.2.2. Growth Types

Figure 4: Growth Types (from Runions (2005))

In the above figure (2), if the leaf (a) represents the starting shape of the leaf, and the grid

within is its growth tensor field (a representation of the position of points inside the leaf),

then:

(b) Marginal growth. As you can see, the margin grows bigger, but the tensor field is not

scaled. This means that area is added to the margin of the leaf without moving points

within it.

(c) Uniform isotropic growth. The margin has grown, as in marginal growth, however the

grid has similarly scaled up, meaning that the contents of the leaf have shifted outwards as

well. Uniform growth is constant for each growth step, whilst isotropic means that growth

is equal in all directions.

(d) Uniform anisotropic growth. The margin is extended, but the growth rate is not the

same in every direction. The growth rate for anisotropic growth is usually defined as two

rates with respect to the x- and y-axis. The tensor grid, and therefore the contents of the

leaf are similarly unevenly scaled. The growth is uniform, so it is constant per step.

Vein root

9

(e) Non-uniform anisotropic growth. Not only is the growth rate different depending on

direction, it is different per step. The growth per step is typically represented by a graph.

Unless otherwise stated, growth should be assumed to be uniform.

1.2.3. GROWTH Hormones and Pigmentation

As this thesis uses biological models to create leaves, there are references to specific

interactions with elements within the leaves that cause behaviour in growth and

colouration. These are taken from (Rodkaew, Chongstitvatana, Siripant, & Lursinsap, 2003)

and (Sanger, 1971)

GROWTH HORMONE

The growth hormone modelled in this paper is known as auxin. It fulfils a large amount of

roles within plant growth. It is present within leaves as they grow, and current studies

suggest that as it moves in from the leaf margin toward the auxin creates channels that

eventually form veins. This is known as the canalisation theory (Sachs, 2003). This is

described in greater detail when venation is discussed.

COLOUR PIGMENTS

Three main pigments define leaf colour. These are chlorophyll, carotenoid, and anthocyanin

which colour the leaf as well as perform other, unrelated tasks. (Sanger, 1971). Chlorophyll is

green, carotenoids are orange or yellow, and anthocyanins are red or purple.

Leaves contain all of these pigments when they are green, however, when the leaf starts to

die, it releases acidic substances from the blade. This destroys the chlorophyll, leaving the

carotenoids and anthocyanins. As the leaf dies further, the carotenoids are converted into

sugars and more anthocyanins are created. This changes the leaf into its final red form.

When the leaf truly desiccates and dies, it turns brown.

1.3. PREVIOUS SYSTEM

This project builds on a previous system written for these theses (Black, 2011) (Goldberg, 2011)

(Danoher, 2011). The system is called Tree Draw. It allows the user to create 3D trees from a

sketch-interface.

The system takes the user sketch and parses its structure to create an L-System that represents

the phylotactic (structural) details of the tree.

A second part of the system takes the constructed L-System and creates a specification for a

tree. This specification is then interpreted into a set of cylinders, which the system then displays.

A specific goal of the system was the ability to allow for variation in the models generated. At

sketching stage, the user could set a range of values of branch size or angle for each branch in

the sketch. The system could then make multiple trees from a single sketch, each one being

different, but related.

1.4. SYSTEM OVERVIEW

10

This thesis is part of a project that is intended to increase the realism of the existing Tree Draw

system. The shortcomings of the previous project were noted and three different elements were

identified as needing improvement or implementation.

This project therefore sets out to research realistic methods to model these different tree

generation elements, while keeping the axioms of the Tree Draw system with respect to usability

and variation. The elements identified were; the lack of leaves and foliage; the lack of realistic

bark texturing; and the lack of a single conjoined tree mesh. The combined system is shown

below.

Each colour represents where each group member’s modules are placed in the system. The grey

represents the existing Tree Draw system.

1.4.1. Mesh Generation and Surface Subdivision

The mesh generation module takes the input originally given to the model generator in the

Tree Draw system. It uses this data to create a joined mesh representing the tree and its

branches. This mesh can then be textured, however it is quite coarse and unnaturally

shaped.

The surface subdivision module takes in the generated mesh and splits face into smaller

faces. It then uses these smaller faces to smooth and refined the surface until the mesh

appears continuous. (Pieterse, 2012)

1.4.2. Texture synthesiser

The texture synthesiser module performs two tasks. Firstly, it creates a new seamless

texture similar to one given by the user, but on a larger area. This process is known as

11

texture synthesis. This also allows for variation, as each tree can have a similar but different

texture.

The second task is the attachment of the texture to each branch of the tree mesh in such a

way that there are no seams. (Mazzolini, 2012)

1.4.3. Leaf generation modules

The leaf generation modules can be split into two logical pieces. The first is the leaf

generator, and the second is the foliage generator.

The leaf generator creates a leaf from a sketch, first forming veins by slowly growing the leaf

margin from a small size, every step growing veins inside the leaf. It then creates the

colouration and texturing based on user given parameters. Lastly, it compiles this

information into a texture material file that can be used in a modelling program.

The foliage generator takes the tree specification given by Tree Draw and a selection of

leaves and creates leaves at ends of each of the branches. The size, number and orientation

of the leaves depends on the given parameters.

1.5. RESEARCH QUESTION

The research goal of the entire project is to improve the realism of the Tree Draw system. With

consideration to the elements of Tree Draw identified as needing improvement, the specific

research questions for this project are listed below, with number three being the question

specifically answered in this thesis:

1) Can branching structure be more realistically modelled by sub-division

surfaces?

2) Can texture synthesis be used to generate a realistic texture of bark that

exhibits variation from a provided sample?

3) Can realistic leaves be generated from a sketch and allowing for variation?

The results of the research question are shown in the result section of this thesis. Unfortunately,

formal user-testing was not possible due to external factors, however several runs have been

created and compared to real leaves. Informal user-testing was applied throughout the design

and implementation process.

1.6. NOVEL CONTRIBUTIONS

The novel contributions in this paper centre around variability. Trees are very complex and time-

consuming to create by hand, and it is unreasonable to expect anyone to be able make several

different trees. Last year’s project, upon which ours is built, focused on the ability to generate

multiple trees from a single sketch. This paper expands upon this idea by presenting the user

with a way to create multiple related leaves to be used on a tree, all generated from a single

sketch. Additionally, the user can attach these leaves to multiple trees without having to change

the settings or parameters, allowing them the ability to create multiple, realistic trees.

12

1.7. THESIS STRUCTURE

After the introduction section, this thesis splits into two different sections, each of which contain

an introduction, background, design and implementation chapter, as well as results. These two

chapters are split because of the logical and coding separation between leaf texture generation

and leaf foliage generation. As a leaf can exist off a tree, and foliage can be created from any leaf

texture, it is possible, and advisable to look as these two entities separately.

Afterwards, the results of the system are shown, followed by the conclusion and future work

section. The addendum after the bibliography contains a detailed explanation of the interface

created for the system, as well as a detailed explanation of the parameters used.

2. LEAF TEXTURE CREATION

2.1. INTRODUCTION

Leaf textures are the image files that define the visual aspects of the leaf. Textures can define

more than just the colour of a leaf. While diffuse textures are the most common, specifying the

colour and shape of the leaf under normal (diffuse) lighting, bump or normal maps can define a

fake geometry for the leaf, which is used to create shadows and detail without affecting the

mesh. Specular maps affect how the leaf reacts to the specular part of a light source, which

determines how a leaf shines at any given point.

There are many other types of texture that can be applicable to leaves, such as transparency

maps, which dictates how much light can pass through a leaf, which is another characteristic of

real leaves (Wang, Wang, Dorsey, Yang, Guo, & Shum, 2006). This was not included in this paper

because the model format exported to (.obj) does not support transparency maps natively. A

transparency map could be trivially created by finding the difference between the top and

bottom bump maps. Since these represent the height of the leaf at that point, the difference

between the two must necessarily be its thickness. The creation of soft bodies, such as leaves, as

a field of study is relatively undeveloped when compared to branching or bark structures. This is

due in part to ease of which pictures of leaves can be obtained and used without alteration, as

well as the complexity of creating a leaf texture from scratch. Additionally, unless the viewer is

placed extremely close to the tree, the details in leaves are unlikely to be visible, and so overall

colour and shape is often more important than accuracy, and is not worth the cost of rendering

involved.

2.2. BACKGROUND

There are many different ways of creating effective leaf textures, each with their own strengths

and weaknesses. The inherent fractal nature of leaves means that they are well suited to

procedural generation techniques such as L-Systems. However, there is also an almost infinite

amount of complexity in nature, and thus it can be argued that sketch-based and user-controlled

methods can provide greater control and accuracy, at the cost of less automation of the process,

as well as less potential for automatic variation. Several methods have been proposed for

texture generation, but most can be broken down and mixed together within these three

categories:

13

2.2.1. SHAPE DEFINITION

The outline of the leaf, used to grow a leaf texture, or fix to a mesh, can be found of defined

from a picture of a leaf, taken in from a user sketch, or defined using parameters. As a

method is mentioned, it will be numbered as such: [i], this number corresponds to its index

in the comparison in Table 1 below.

IMAGE-BASED

Image based is likely the most accurate of the methods for shape definition. This was the

first method used, referenced as far back as Modelling the Mighty Maple (Bloomenthal,

1985), where the leaf textures were captured and edited by hand before being placed on the

tree [1]. This is the most accurate method, however is the most time consuming, and limits

the amount of textures one can generate to leaves that can be found. The methods below

are broken down depending on whether one wishes to use the picture of the leaf as the

texture afterwards, or whether one is simply interested in the shape. While the outline is

unlikely to be an important outcome by itself, once found it can be either redefined

parametrically, or simply stored as a point cloud to be used in later stages of leaf modelling.

(Mundermann, MacMurchy, Pivovarov, & Prusinkiewicz, 2003) used a simple system of

shape definition from a scanned image on a white background. Each pixel of the leaf that is

touching a light background is captured and stored as the program crawls around the

outside of the leaf, resulting in the outer perimeter. They then cull the least important

points, turn the image shape, and create a B-spline curve, a parametric representation of the

leaf, which they can use later [2]. Their use for this, a mesh creation phase, is discussed in

the section 3.

This method has several flaws, which are flaws of image-based shape definition in general.

The picture must be well scanned and in focus for the program to work. Equal, the image has

to be pre-processed, removing any flecks from the image that the code might pick up whilst

also changing the saturation and brightness to give the best outline. Additionally, while most

leaves are well suited to being scanned, being largely planar in nature (de Reffye, Edelin,

Françon, Jaeger, & Puech, 1988), there are leaves which cannot be flattened without

damage, removing the value of the shape gained. Lastly, as this paper is stated to use a

boundary following algorithm, it can miss holes within the leaf itself. This is an issue whether

the texture is intended for use or not, as the hole in this case will be white and very

noticeable. Mundermann’s suggested fix is the ability to edit the b-spline once is it created

by moving the points that define it, however this does remove its ability to generate outlines

autonomously.

Another possible method is to recreate the shape in 3D. (Quan, Tan, Zeng, Yuan, Wang, &

Kang, 2006) developed and tested a method where an entire plant is modelled from several

photographs taken at precise angles around the plant [3]. While they admit that the

methods could struggle with accuracy over an entire plant, it does show promise when the

object to be modelled is against a stark background. This could make it invaluable for image-

based shape definition in the future. Though currently it is not accurate enough, it is not

difficult to see a future system that can be given a plant and retrieve all of the leaves in one

run, for use on future models.

14

PROCEDURAL

Procedural shape definitions tend to act as the inverse of image-based techniques. Whilst

image-based techniques work from the outside of the leaf, taking large amounts of data

points and refining them, procedural techniques work form the inside out. The most

common methods define a skeleton framework, much like a tree, and then build an outline

around it, using parameters to determine specific details such as edge serrations or point

shapes.

The most common system for this category is an L-System. As described in (Prusinkiewicz &

Lindenmayer, The algorithmic beauty of plants, 1991), the internal structure of a leaf is not

unlike that of a tree, with strict branching structures. In fact, due to largely planar and fractal

nature of leaves, L-Systems can be an even better approximation than trees, for certain leaf

types. Lobed leaves are particularly well suited to L-Systems, as well as compound leaves

(Prusinkiewicz, Hammel, Hanan, & Mech, 1996, February) [4]. However the diversity of leaf

types in nature means that while individual types of leaves can be successfully modelled

using L-systems, it is not feasible to create an L-System for any kind of leaf. Additionally,

creating an L-System for a leaf type is not trivial, and requires more skill than the ordinary

user may possess, leaving this in the hands of professionals.

An added complexity exists in that the same L-System used to describe the shape may also

be a good approximation to the venation of the leaf itself, as suggested by (Prusinkiewicz &

Lindenmayer, The algorithmic beauty of plants, 1991). This can either sufficient or

completely inadequate, depending on the type of leaf. This is discussed in greater detail

when venation is discussed below.

It is also possible to take advantage of the fractal nature of leaves and define a shape that is

inserted into itself to form a fractal leaf. The maple leaf is one such example of an

approximately fractal leaf.

SKETCH-BASED

Sketch-based shape definition is an amalgamation of both image-based and procedural

techniques. Which it resembles closest depends largely on the intended outcome of the

sketch.

Sketch-based techniques in which the user draws the outline are very similar to image-based

techniques, as the resulting data is a collection of points to be processed. This technique is

used in (Okabe, Owada, & Igarash, 2005) can be used to simply draw the outline of the leaf

[5]. This technique is not the subject of many papers, due to the simplicity of its

implementation, however it is a practical and powerful way to provide input from a user that

is easy to understand for both the system and person, and is the first step in many papers

that deal primarily with the later stages. (Runions, Fuhrer, Lane, Federl, Rolland-Lagan, &

Prusinkiewicz, 2005) is one such example. The greatest drawback with this method is that it

relies on the drawing skill of the user, as well as the same drawbacks that sketch-based

interfaces have around difficulty in creating variation. Runions attempts to mitigate the skill

factor by having the user define points for a curve.

15

In the other direction, sketches are frequently used to specify parameters for procedural

generation. A good example of this method in several forms is found in (Anastacio,

Prusinkiewicz, & Sousa, 2008), where sketches are used for defined the relative size of

leaves on a compound leaf (by sketching a bounding shape) [6]. They are also used for

defining graphs that give growth over time, as well as growth for each axis, and as a method

of defining the phylotaxis (structure) of a compound leaf, showing where each leaf should be

with a sketch of a grid. The greatest problem with this system is the complexity. It takes a

great deal of internal logical to convert sketches into meaningful constraints. Even though

Anastacio had good results for some of their goals, the most difficult parameters remained

undeveloped at the end of the paper.

COMPARISON

This table below summarises the advantages and disadvantages of using a particular

technique.

Method for
defining leaf shape

Computat
ion cost

Accuracy Usability Potential for
variation

[1] – Manually
from picture

Low High Low (manual
work)

Low

[2] – Travel around
boundary of

picture

Low/
Medium

Medium/ High Medium (good
when it

doesn’t fail)

Medium (affine
transforms of

outline possible)

[3] – Get 3D shape
from multiple

images

High Low Low/Medium
(could be

automated)

Medium (No actual
variation, but many

leaves gained)

[4] – Outline
around L-System

Medium Medium/ High
(dependant on

leaf)

Low/Medium
(If the

parameters
are pre-set)

High

[5] – Sketching an
outline

Medium Medium
(depends on

user skill)

High Medium (Affine
transformations to

outline)

[6] – Sketching
parameters

Medium/
High

Medium/ High Low/Medium High

 Table 1 : Comparison of Shape Definition Techniques

The technique for shape definition used in this paper was derived from sketching the

outline. This was due partly to the fact that the preferred system, creating an outline from

an L-System, was out of scope. However, it was also felt that the sketch interface fitted well

with the sketch interface in the previous project for drawing trees. An option to load an

outline from a two-colour image file was added to mitigate the reliance on user skill.

2.2.2. LEAF VENATION

Leaf veins are an important element in leaf texturing. They are the most noticeable trait of a

particular leaf, after shape, and cannot be ignored. There are relatively few good ways of

creating veins, which are discussed below.

16

 L-SYSTEM BASED VEINS

As stated above, one of the advantages of using L-Systems to define leaf shape is that the

same structure can provide veins for the leaf. This is very much like modelling leaves as

planar trees. This is covered in detail by (Prusinkiewicz & Lindenmayer, The algorithmic

beauty of plants, 1991). Prusinkiewicz continues to use this technique in his papers (Boudon,

Prusinkiewicz, Federl, Godin, & Karwowski, 2003). One flaw in this system is that it limits the

leaves that are able to be made to those that can be generated with L-Systems, which limits

the number of different leaf types possible.

 BIOLOGICALLY –MOTIVATED VENATION

These algorithms are based around creating vein as a simulation of the natural processes

found in leaves. As such, they take many iterations to complete and can be very

computationally expensive. The algorithms involve the movement of the growth hormone,

auxin, from within a growing leaf to down into the tree. As the auxin travels, it creates veins

in the leaf. This is known to botanists as canalisation (Sachs, 2003), due to the fact that the

auxin creates veins in a way similar to how water creates rivers and canyons.

The first attempt at modelling this process to generate veins was by (Gottlieb, 1993), which

still holds with current knowledge of vein structure. Its use of grids for auxin position

definition makes it difficult to use for image generation however. This process was adapted

and implemented by (Rodkaew, Chongstitvatana, Siripant, & Lursinsap, 2003). Auxin is

placed at random into a full leaf outline. At every iteration, the auxin move toward the

average of their nearest neighbour and the root of the leaf. As the auxin moves, it creates a

vein behind it. If it reaches a vein created by a previous auxin, it is destroyed (carried away

by the vein). Once all of the auxin are destroyed, the vein width is calculated as the sum of

its children vein’s energy (where the end veins have an energy of 1).

Figure 5: Auxin Growth toward root (Rodkaew et al, 2003)

17

This algorithm gives good results, with very high realism. However it can break under several

different leaf conditions, where the root is not in sight of the node. Additionally, it is difficult

to improve upon their process as it deviates from what is known about the natural

processes.

(Runions, Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005) suggested an

improved technique that deals with many of the issues of the previous paper. In their paper,

the leaf starts at a small size and is expanded every iteration. During an iteration, auxin is

spawned randomly throughout the leaf. The auxin find the closest vein, however, in this

algorithm, it is the vein that grows toward the auxin, this is a better simulation of the

process in real plants and creates several speed up opportunities, mostly in the nearest node

search patterns, that take the execution time down from hours to seconds per leaf.

The fact that the leaf grows also allows the incorporation of different types of growth, each

modelling a different leaf growth pattern. These have the effect of elongating, or shortening

the veins, increasing or decreasing branching and other effects that increase realism.

Unfortunately, the implementation complexity of non-uniform growth (where the growth

changes per iteration according to a function) made it future work for their paper. This is

unfortunate, because it is the most general model of growth (any uniform growth can be

modelled using non-uniform growth systems with constant growth).

These algorithms can provide extremely realistic venation, but struggle to simulate leaves

that have symmetric venation, as they do not look at the overall venation structure.

However, with the right parameters, specifically larger initial leaf sizes, the algorithm can

gain fairly straight and symmetrical venation.

As may be concluded from the title of this paper, the method chosen for the leaf texture

venation was taken from the biologically- motivated algorithm by Runions, as it provided

very interesting opportunities for variation, in that the growth of the veins depends entire

on the growth of the leaf and auxin. This means that potentially, unlike the L-System, which

must be changed, any leaf can be modelled with this algorithm, if the actual implementation

is accurate enough.

2.2.3. COLOURATION

Leaves are typically coloured in two main ways, from an image, or procedurally. (Wang,

Zhao, Lu, & Guo, 2009).

IMAGE-BASED

Getting colour data from an image is a viable option, and one that occurs frequently, as in

(Reche-Martinez, Martin, & Drettakis, 2004), which takes colour of leaves scanned while

doing a 3D reconstruction to use as the base colour of the reconstructed leaf.

Image-based techniques assume that leaves on a single tree are similar enough that it is

difficult to see that they are, in fact, the same leaf. (Mundermann, MacMurchy, Pivovarov, &

Prusinkiewicz, 2003) attempt to mitigate this fact by changing the shape of the leaf using

deformation of the underlying mesh. (Mochizuki, Horie, & Cai, 2005) propose a system that

runs through the foliage structure once it has been generated, and discolours leaf textures

18

using ray tracing from a sun point about the tree, which is expensive, but could provide good

results.

PROCEDURAL

Procedural techniques use the underlying structure of the leaf to inform the colour at a

point. This includes veins, edges and orientation.

The most basic form of this technique is applied in (Rodkaew, Chongstitvatana, Siripant, &

Lursinsap, 2003). In this paper, leaf colour is set to a solid shade, to which is added noise.

Veins are added to the texture and the vein colour is blurred out away from the veins. This

can make a fairly convincing leaf texture. The purpose of the noise in this paper is to

simulate smaller veins that have not been modelled.

The simulation of autumn colours has been studied for some time. (Chiba, Ohshida,

Muraoka, & Saito, 1996) was one of the first to look at how the observed effects of autumn

leaves could be modelled. The basic colours are set similarly to those above; however

afterwards, the aging process is applied to the leaves, warping their colour. Their paper

contains a similar model to (Mochizuki, Horie, & Cai, 2005), where the leaves are first placed

on the tree, and then the colour is recomputed. The effect of the sun on a leaf is that it

eventually destroys the green chlorophyll in each leaf, leaving behind the yellow carotenoid,

and eventually only the red Anthocyanin. This turns the leaf colour slowly red. This is

modelled after studies done on real leaves, such as (Sanger, 1971).

This is taken to the final logical step in (Zhou, Dong, & Mei, 2006), where the colour of maple

leaves is defined by a graph of concentration for each of the three pigmentations over time.

These graphs are then recalculated based on numerous factors, such as sunlight strength,

climate and precipitation. This allows the creation of a very realistic leaf. However, this

implementation is specific to maple leaves, and those few others that exhibit this particular

seasonal change.

A simple model for simulating damage to leaves due to frost, hail or other environmental

factors is laid out in (Mochizuki, Horie, & Cai, 2005), where damaged points in leaves are

treated as if they were in direct sunlight, discolouring them and deforming the leaf at that

point.

For this thesis, the chosen colouration scheme was modelled after the one used in

(Rodkaew, Chongstitvatana, Siripant, & Lursinsap, 2003), as the internal structures of the

leaf shape are very similar to those used in the paper that is the basis for venation (Runions,

Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005). While it would be best if

seasonal colour changes were also included, systems such as (Mochizuki, Horie, & Cai, 2005)

are not in the scope of this project. However, a modified and simplified version of (Zhou,

Dong, & Mei, 2006) was used to simulate seasonal leaf colour changes and leaf damage, by

estimating pigmentation level based on hue values.

19

2.3. DESIGN AND IMPLEMENTATION

2.3.1. PROCESS FLOW DIAGRAM

Figure 6: Texture Creation Process Flow Diagram

Where each colour represents a different module

2.3.2. User interface

The user interface for this section contains the sketch interface and parameter selector. A

diagram and explanation of their use can be found in the appendix (Section A.1)

2.3.3. Shape Creator

The shape creator defines the root and outline of the leaf that is used in the venation and

texturing processes. It differs from the style used in (Runions, Fuhrer, Lane, Federl, Rolland-

Lagan, & Prusinkiewicz, 2005) which defines its shape as the starting shape of the leaf, which

is then expanded into the final leaf. This thesis uses instead a sketch-based interface for the

leaf shape definition. This means that the input into the rest of the system is the final size of

the leaf, from which the starting size must be extrapolated as a function of the number of

steps the leaf must grow for. Each approach has advantages and disadvantages. By defining

the starting shape, Runions stays closer to the biological model the leaf uses, which in turn

creates more realistic leaves. It is difficult to foresee the end result of a particular growth

however. By contrast, taking the final shape of the leaf gives greater control of the final look

of the leaf, but the leaf itself is somewhat less biologically accurate as a result. Additionally,

it allows the system to calculate the texture size in advance, since the maximum size of the

leaf is known.

RECEIVE OUTLINE AND ROOT FROM USER

The user may sketch a leaf shape in the sketch interface using the pen tool and eraser

provided. Alternatively, the user may choose to load the outline from a picture. The picture

is converted into a two colour picture as follows:

20

The program takes the colour value in the top left corner as the white value. It then creates

a new image, and iterates through both the old and the new side by side. If the pixel in the

old picture is the white value, then the pixel in the new picture is made white, otherwise the

new pixel is made black. The need for a more complex conversion was not felt needed, as it

is not difficult to format the image into the appropriate style in any image editor.

The image loader does not find the outline of the image, only doing a pixel-by-pixel

conversion. This means that the loaded outline may not be just a single pixel thick and may

even be a solid black shape. This can be fixed in the program using the pen and eraser tool if

required, or alternatively simply reformatting the file and loading again.

Figure 7: User Drawn Sketch (left) and successfully loaded leaf (right)

Any sketch created in the sketch interface can be saved to one of several file formats

(defaulting to .png) for use in another session.

The user then selects the position of the root using the select root tool. Clicking anywhere

on the sketch area will place the root at that location.

 VALIDATE SHAPE

Once the user is satisfied with the design, the validate button is pressed. This initiates the

validate routine ensures the outline is whole and contains the root.

The process starts at the root node and checks that it is white (and therefore not on an

outline). If so, the pixels above, below, left and right of the pixel are added to a stack. The

front pixel is popped off the stack, and if it is not an outline, the pixels around it are added to

the stack and the pixel is marked as visited. The process then continues until the stack is

empty. This is a simple flood fill procedure.

While the process is running, two conditionals are checked on every pixel. If the pixel

checked is an outline, its position is added to the shape definition. If the pixel is off the

canvas, this implies that the outline is not whole, and the outline is not valid.

If the outline runs its full course without being invalidated, the shape definition is created as

a list of vectors, each one representing the vector to an edge pixel from the root node. For

example (10,2) represents an outline pixel 10 to right and 2 down from the root. The outline

is stored as such so that the outline can be grown out again easily. The outline will pick up

on line drawn within the leaf area. These are stored as well and can be used if a leaf has a

very close divide, of serrations.

21

If the leaf is valid, the parameter menu will be enabled and the interior of the leaf will turn

green, both as an indicator that the validation is complete, and also to show the recognised

shape that the leaf will use. As the process attempts to find the single line outline around

the root, it does not pick up any closed shapes away from the root. It does not find pixels

across diagonals either. This is to prevent spilling over the outline unintentionally. However,

should the user be dissatisfied, they can edit the outline and try again.

Figure 8: Validated leaf (left) Validated interior only (centre) Validated with dividing line (Right)

2.3.4. Parameters

The parameters are collected from the parameter selection interface. Each parameter is set

with a minimum and maximum value. This choice allows for variation when multiple leaves

are created from one outline and parameter set.

A detailed explanation of each parameter can be found in the appendix (section B).

A detailed explanation of the parameter selection interface, as well as the two panels used

to input parameters can be found in the appendix (section A.2).

The parameter selector can save and load text files with the parameter data. This allows the

recreation of previous leaf parameters. Along with the ability to save an outline, this allows

the user to recreate leaves later if so required, although the venation and colouring will still

differ slightly, as they are regenerated.

Once the user is satisfied with their parameters, they can select OK to return to the main

interface. This unlocks the next set of options: Preview Leaf, which creates a single top

texture using the parameters supplied, and create leaves, which, along with the number of

leaves required, starts the leaf venation process (once per leaf).

2.3.5. Leaf Venation

This module takes in the leaf shape, as well as the growth parameters explained in section

A.2, but specifically, those affecting leaf and vein growth and auxin placement and death,

creates a vein structure for the leaf. The veins are stored as a tree with the root being the

root of the leaf. The auxin are simply stored in a list.

22

The initial state of the leaf is created, with the root as the centre of growth and the margin

at step 0 is set up from the outline vectors. For marginal or isotropic growth, the starting

positions for each point of the margin are set as

For root point r, outline vector v and total growth . This ensures that the margin starts

with area.

If the growth is anisotropic, the x- and y- growth rates are different. This means that the

number of steps taken to grow horizontally differs from the amount of steps vertically. The

solution suggested in (Runions, Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005)

works well for an input of the starting outline, but does not help with this format.

The solution is to take the growth steps for x- and y- and find the highest. This is then made

the total amount of steps. The difference between the highest and the lowest is the number

of steps the other growth rate does not complete. Since the end result of this growth is

defined, it must be that the lower growth steps started at (highest-lowest) steps closer to

their goal.

The leaf must be then be adjusted so that the start positions allow the margin to grow to

right size in the same amount of steps for both x- and y- growth.

For more detail, see the appendix (section B.2).

If there is no growth, the margin is just set to the maximum leaf size.

Similar assumptions are taken to those from (Runions, Fuhrer, Lane, Federl, Rolland-Lagan,

& Prusinkiewicz, 2005). Specifically, it is assumed the veins and auxin create a feedback loop,

where veins affect auxin placement and destruction, and auxin in turn control vein growth

direction and development.

Figure 9: Venation cycle

Once the parameters are in place, the process starts to create veins. The program runs for a

number of iterations, (total growth - growth start value)*scale with step value n. n’s value

starts at (start growth)*scale and ends at the value of the (total growth)*scale. At each

iteration, the cycle is run through as below.

Once the iterations are over, the system stops, no matter how much auxin is left.

23

LEAF GROWTH

For root point r, outline vector v and proportion of growth completed after n steps of total

growth , the position of the outline is calculated as

If the growth type is isotropic or anisotropic, the veins and auxin are shifted along with the

margin, so that for each vein or auxin point ,

With an assumed “starting position” of

 for each iteration

AUXIN PLACEMENT

The auxin is placed randomly according to the dart-throwing algorithm. If the auxin lands

within the spawn distance from a vein or leaf, it is destroyed.

VEIN GROWTH TOWARD AUXIN

Each auxin creates finds its closest vein and stores the normalised vector from the vein to

itself in a list. If a line from the closest vein to the auxin leads through the outline, the vein is

not added to the growth list. The line check uses Bresenham’s line algorithm to check a

straight line between the points. It initially checked each node until the closed non-blocked

node was found, but this was far too expensive. It now checks only at the end, and if the

node is not visible, it simply does not add it.

The program then iterates through the list, for each vein that has been added at least once.

It adds up the all the vectors that point towards one vein node and then normalises that

vector.

Lastly, a new node is created from each vein node mentioned in the list, at the position of its

parent plus the vector.

Occasionally the vector will be less than 1 before it is normalised, this happens if a vein is

between two auxin. If this happens, the first vector is removed and creates a new vein node

from the target vein node in the direction of its normalised vector. This repeats until the

averaged vector is greater than 1, or the list is depleted.

AUXIN DEATH

The auxin each check for the distance to the closest vein node to themselves. If it is less than

the kill distance, the auxin is destroyed. This test does not worry about line of sight.

24

EXAMPLE

Figure 10 : Example of marginal vein growth

(a)Represents the current leaf, midway into. At (b) The auxin each find their closest vein.

(c)The veins find the normalised average of their target auxin. (d) The vein nodes create new

nodes along the vector. (e) The veins are confirmed. (f) The auxin check to see if they are

outside of the kill radius. One is removed. (g) The leaf grows and adds more auxin. The auxin

check to see if they are outside of the spawn radii. (h) The Auxin are confirmed, one is

removed. (i) The cycle starts again.

The vein for a vein node v is determined by the following value using Murray’s Value

(Runions, Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005):

 √

25

2.3.6. Texturing

The texturing stage makes two textures, one for the front of the leaf, and one for the back. It

also makes two separate bump maps. The texture for the back of the leaf is flipped, so that

is matches with the front when back-to-back. The front bump maps has the veins slightly

recessed, while the back bump map has them stick out over the surface, this is based on real

leaves (Judd, Campbell, Kellogg, Stevens, & Donoghue, 1999).

Figure 11: Front and back textures and bump maps

See the appendix for more on texture values (B.3).

TEXTURING

The texture is created by making a new image an filling the interior of the outline with the

base colour. The colouration is then applied to the leaf. If the leaf has chosen a colour type,

the colour is applied. For each colour type, the value of the colour at point p, a point near

the target that is creating colour is a function of the distance from the target t, and spread s

and the colour values base, the existing value and alt, the new value, as follows:

 (

)

Which means the new colour is slowly lost the further is from the target point. The colour

value is the average of the HSV colour values of the two points. Colour is only applied to the

interior surface of the leaf.

From Veins: The alternate colour is spread from each vein node outward at (spread*root

width).

From Edges: The colour is spread out from each edge point to the maximum of spread

distance.

Speckled: Points are created using the dart-throwing algorithm. 1/10 of the parameter for

auxin placement points are placed. Colour is then spread out from these points to a distance

of spread.

Any growth type not applied is still used, with a colour value just less than the base colour to

give the leaf texture and simulate the small veins not made during the venation process.

The petiole is then added to both textures. It is drawn on top of the texture for the back

texture and drawn underneath the texture for the top leaf.

26

SPECULAR VALUE

The specular value taken from the parameters is added to the leaf material.

NORMAL MAP

The normal maps are height maps that use the red value to indicate height from 0 to 255.

They are created by making two new textures and filling in the blades with red (128). It then

draws the veins onto the leaf, higher up for the bottom texture, lower down for the top

texture. It then speckles both textures and draws the petiole at the same height as the roots

according to each texture.

MATERIAL

The all of the materials are then placed into a material file, .mtl, used by .obj objects for

texture data. They include both textures, their height maps and specular value parameters.

An example material can be found in the appendix.

3. LEAF MESH CREATION AND PLACEMENT

3.1. Introduction

This section places the completed leaves onto a tree mesh. The position of the leaves is found

from the LST file produced from the Tree Draw system. This file contains the rotations and

translations required to get from the root to every branch. These are stored in a tree structure.

The full specification can be found in the appendix.

3.2. BACKGROUND

3.2.1. LEAF MESH GENERATION

The preferred method of leaf meshing is that of (Mundermann, MacMurchy,

Pivovarov, & Prusinkiewicz, 2003), wherein each leaf is placed onto a full mesh made

from an internal web created using the leaf’s outline. This was however, far beyond

the reach of this project.

Another, simpler alternative was the simple mesh used in (Bloomenthal, 1985), which

created three quads that could hinge in such a way as to give a good impression of

shape.

3.2.2. FOLIAGE CREATION

Foliage creation for this system was hampered, mostly because the favoured methods

for foliage generation involved the use of bounding hulls. (Deussen & Lintermann, A

modelling method and user interface for creating plants, 1997) and (Chen, Neubert,

Xu, Deussen, & Kang, 2008).

Additionally, due the enhancements created in the mesh joining part of this project,

this thesis was unable to change the branching structure, or easily get an accurate

point on the tree, other than the end points.

27

Under these conditions, and taking scope into consideration, the final foliage

generation scheme was taken from (Bloomenthal, 1985)

3.3. DESIGN AND IMPLEMENTATION

3.3.1. USER INTERFACE AND PARAMETERS

The parameters are taken in from the user interface, including the LST of the file to

be used, and the material files for the leaves. The LST files the file type used by Tree

Draw to define branch structure.

The user is able to control how many leaves spawn on a single edge node, how far

away these branches spread from each other, and how big they are. The angle of the

leaves downward is calculated as a function of their size.

For each leaf material file, the user can place a value, determining the ration in

which the leaf is to be assigned to a branch. The leaves are randomly picked with a

probability of ratio/(total ratios)

3.4. FOLIAGE CREATION

3.4.1. Placement

The edge nodes are found by building out the tree for the LST file and then finding

those nodes that do not have any children. The LST file is parsed using code from

(Pieterse, 2012), after the tree mesh has been produced.

For each edge node, the program spawns the number of leaves set by the parameter.

The leaves are arranged in natural looking groups using a heuristic as suggested by

(Bloomenthal, 1985). Each leaf then picks a texture and calculates the right size.

The program creates a new quad, representing the leaf, and rotates it by the spread

and tilts it according to its size (the bigger it is, the more is hangs down) . It then

rotates it by the edge node rotation (so that it faces the same way as the branch), and

is translated to the edge node position. The position is shift slightly to ensure that the

petiole is touching the branch.

This quad and its data are then added to a list to be written to file.

3.4.2. SAVING TO FILE

The quads are written into an .obj file, following OBJ specifications. The top texture

and bottom texture are mapped to the same 4 vertices, but in opposite directions, this

ensures that one texture will display on top and one on the bottom.

A sample render of the result can be found in the testing results.

28

4. TESTING

4.1. PERFORMANCE TESTING

Leaf creation was timed from initiation of venation to the end of texturing and was initially

found to take several hours for even a small leaf. The solution was to create a grid structure over

the leaf that was used to quickly and efficiently add and remove veins and auxin, making finding

the nearest neighbour much quicker. This resulted in algorithms that ran in under a minute.

Several tests were run to test the effects of changes in parameters using the sample leaf below.

For details on the parameter, see the appendix.

Figure 12: Test Leaf Outline

All unstated parameters are set to constant according to the list below.

Auxin Spawn Rate 600

Auxin Spawn Distance 5

Vein Spawn Distance 5

Auxin Kill Distance 5

Growth Type Isotropic

Total Steps 600

Starting Steps 300

Tests to judge the effects of growth parameter changes are detailed below:

Spawn distance (both vein and auxin) Time (secs)

1 34

5 25

10 11

100 9

Auxin Kill Distance Time (secs)

1 43

5 25

10 18

100 3

29

Auxin Spawn Rate Time (secs)

1000 212

600 25

400 12

100 8

Growth Type Time (secs)

Marginal 38

Isotropic 25

Anisotropic 26

None 32

Total Steps Time (secs)

600 25

1000 370

3000 >6000

5000 >6000

From these figures it is easy to see that the amount of auxin in the leaf greatly affects

performance, this makes sense, as the most costly operation in the code is finding the nearest

neighbour. When the kill distance is high, the auxin is never placed. Because the auxin is placed

per step, increase the number of steps without accommodating for the change results in

catastrophic generation rates.

4.2. RESULTS

4.2.1. VENATION

Figure 13: Growth types (Left to Right) Isotropic, anisotropic, marginal, none

As you can see, Isotropic veins can wander slightly, whilst the anisotropic grew up toward

the top quicker. Marginal veins were slightly straighter, and no growth produced the

straightest veins with more branching than marginal.

30

4.2.2. TEXTURING

Figure 14: Left to Right - From Edges (front texture), From Veins (back texture), Bump Map. Each taken from a different leaf created with

the same parameters, but with variation

4.2.3. FOLIAGE

Figure 15: Foliage Render

31

4.2.4. FULL RENDER OF LEAVES COMPARED TO REAL LEAVES

Figure 16: Red Maple Leaf Rendered

Figure 17: Brown Maple Render

4.3. CONCLUSION

The system worked extremely well, and it was fairly easy to create leaves that looked like the

specified pictures. The performance results were extremely encouraging. While changes in the

growth rate took a toll on performance, this is not as big of an issue as it first seems. The leaf

algorithm tends to work best in all areas at under 2000 total steps. Over that, the veins become

too thick and numerous and the increments in growth are simply too small. This is because of

the relatively small texture size chosen, which works well for rendering, but is perhaps a bit too

small for generation.

32

4.4. EXPERIMENTAL ERRORS

The foliage algorithm only works on one PC. It is suspected to be caused by a conflict between

32- and 64- bit software, however the true cause has not been found.

5. CONCLUSION
Leaves and foliage are a complex, yet crucial part of procedural generation. Although these leaves

have not reached the full realism of a hand crafted leaf, the shear variation of them make every tree

unique and interesting. The true conclusion that can be drawn out of this thesis is that there is a

reason that leaf generation is studied significantly less than other types of procedural generation: It

is extremely hard and complex. Even a good system will only work for so many kinds of leaves. It is

true that leaves follow well defined patterns that can be modelled with rules, however it is also

important to consider that these rules are not the same for every leaf.

The results of the colouration were favourable, although there were some issues with extremely

different colours and blending, this is more due to allowing the user to pick colours outside of the

system tolerance and natural leaf colour variation. However, for the most part, the choice of HSV

created a good approximation for leaf pigmentation presence.

The foliage creator produces adequate foliage. However, it was not all that foliage generation can

be. Unfortunately, the limitations set by the previous system meant that foliage could not be

generated using the most popular current method: convex hulls. In many newer papers, trees are

generated by defining the trunk and a bounding hull for the foliage. The leaves then populate the

hull and branches are grown back from the leaves to the trunk, in much the same way as veins are

formed in this paper. This result works best when the user cares about the overall shape of the tree,

rather than biological accuracy. (Chen, Neubert, Xu, Deussen, & Kang, 2008)

As a research into the methods of generating leaves, this thesis can quite clearly show that it is

possible to generate realistic leaves using biologically motivated algorithms. For a large percentage

of leaf types, this system will produce good results, particularly for venation.

6. FUTURE WORK
There is much room for future work on this system. The implementation of both non-uniform

growth and closed venation would significantly increase the types of leaves that could be created. As

well as improvements and speed ups in the nearest neighbour search to speed up the process. The

algorithm would be much improved by the addition of parameters to control, to some extent, the

straightness and symmetry of the veins, perhaps by using con strained auxin placement.

Additionally on the texturing side, recreating the colouration to use more parameters would allow

the user to get better results .It is also possible to infer colour from the position of the leaves once

they are on the tree model, which would greatly increase realism. Enhancements such as specular

maps would also greatly increase the realism.

33

For mesh generation, attaching the leaf textures to a more detailed mesh will allow for the

formation of macro-details and allow for the deformation of the leaf based on environmental

factors.

Lastly, under the foliage creation, a system that could dynamically and interactively replace, move,

or distort leaves once they are on the tree would help shape the foliage better, something that is

lacking in this system and Tree Draw as a whole.

34

7. REFERENCES
Anastacio, F., Prusinkiewicz, P., & Sousa, M. C. (2008). Sketch-based parameterization of l-systems

using illustration inspired construction lines. In Proceedings of 5th eurographics workshop on

sketch-based interfaces and modeling. SBIM’08.

Bloomenthal, J. (1985, July). Modeling the mighty maple. In ACM SIGGRAPH Computer Graphics, pp.

305-311.

Boudon, F., Prusinkiewicz, P., Federl, P., Godin, C., & Karwowski, R. (2003, November). Interactive

design of bonsai tree models. In Computer Graphics Forum, pp. 591-599.

Chen, X., Neubert, B., Xu, Y. Q., Deussen, O., & Kang, S. B. (2008, December). Sketch-based tree

modeling using Markov random field. In ACM Transactions on Graphics (TOG), p. 109.

Chiba, N., Ohshida, K., Muraoka, K., & Saito, N. (1996). Visual simulation of leaf arrangement and

autumn colours. The Journal of Visualization and Computer Animation, 79-93.

Cook, M. T., & Agah, A. (2009). A survey of sketch-based 3-D modeling techniques. Interacting with

Computers, 201-211.

de Reffye, P., Edelin, C., Françon, J., Jaeger, M., & Puech, C. (1988). Plant models faithful to botanical

structure and development. In ACM SIGGRAPH Computer Graphics (pp. 151-158). ACM.

Deussen, O., & Lintermann, B. (1997, May). A modelling method and user interface for creating

plants. In Graphics interface, pp. 189-197.

Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., & Prusinkiewicz, P. (1998). Realistic

modeling and rendering of plant ecosystems. Realistic modeling and rendering of plant

ecosystems. In Proceedings of the 25th annual conference on Computer graphics and

interactive techniques (pp. 275-286). ACM.

Dorsey, J., & Rushmeier, H. (2009, August). Advanced material appearance modeling. In ACM

SIGGRAPH 2009 Courses, p. 3.

Ford, A., & Roberts, A. (1998). Colour space conversions. London: Westminster University.

Gingold, Y., Igarashi, T., & Zorin, D. (2009, December). Structured annotations for 2D-to-3D

modeling. In ACM Transactions on Graphics (TOG), p. 148.

Godin, C., & Caraglio, Y. (1998). A multiscale model of plant topological structures. Journal of

theoretical biology, 1-46.

Ijiri, T., Owada, S., & Igarashi, T. (2006). The Sketch L-System: Global Control of Tree Modeling. In

Smart Graphics, pp. 138-146.

Mech, R., & Prusinkiewicz, P. (1996). Visual models of plants interacting with their environment. In

Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

(pp. 397-410). ACM.

35

Mundermann, L., MacMurchy, P., Pivovarov, J., & Prusinkiewicz, P. (2003, July). Modeling lobed

leaves. Computer Graphics International (pp. 60-65). IEEE.

Neubert, B., Franken, T., & Deussen, O. (2007, August). Approximate image-based tree-modeling

using particle flows. In ACM Transactions on Graphics (TOG), p. 88.

Okabe, M., Owada, S., & Igarash, T. (2005, September). Interactive Design of Botanical Trees using

Freehand Sketches and Example-based Editing. In Computer Graphics Forum, pp. 487-496.

Olsen, L., Samavati, F. F., Sousa, M. C., & Jorge, J. (2008). A taxonomy of modeling techniques using

sketch-based interfaces. Eurographics State of the Art Reports.

Prusinkiewicz, P., & Lindenmayer, A. (1991). The algorithmic beauty of plants. The Virtual

Laboratory.

Prusinkiewicz, P., Hammel, M., Hanan, J., & Mech, R. (1996, February). L-systems: from the theory to

visual models of plants. In Proceedings of the 2nd CSIRO Symposium on Computational

Challenges in Life Sciences, (pp. 1-32).

Prusinkiewicz, P., James, M., & Mech, R. (1994). Synthetic topiary. In Proceedings of the 21st annual

conference on Computer graphics and interactive techniques (pp. 351-358). ACM.

Prusinkiewicz, P., Mündermann, L., Karwowski, R., & Lane, B. (2001). The use of positional

information in the modeling of plants. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques (pp. 289-300). ACM.

Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., & Kang, S. B. (2006, July). Image-based plant modeling.

In ACM Transactions on Graphics (TOG), pp. Vol. 25, No. 3, pp. 599-604.

Reche-Martinez, A., Martin, I., & Drettakis, G. (2004, August). Volumetric reconstruction and

interactive rendering of trees from photographs. In ACM Transactions on Graphics (TOG), pp.

Vol. 23, No. 3, pp. 720-727.

Rodkaew, Y., Chongstitvatana, P., Siripant, S., & Lursinsap, C. (2003). Particle systems for plant

modeling. Plant Growth Modeling and Applications, 210-217.

Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A. G., & Prusinkiewicz, P. (2005).

Modeling and visualization of leaf venation patterns. In ACM Transactions on Graphics (TOG)

(pp. Vol. 24, No. 3, pp. 702-711). ACM.

Sanger, J. E. (1971). Quantitative investigations of leaf pigments from their inception in buds through

autumn coloration to decomposition in falling leaves. Ecology, 1075-1089.

Smolenová, K., & Hemmerling, R. (2008). Growing virtual plants for virtual worlds. In Proceedings of

the 24th Spring Conference on Computer Graphics (pp. 67-74). ACM.

Wang, L., Wang, W., Dorsey, J., Yang, X., Guo, B., & Shum, H. Y. (2006). Real-time rendering of plant

leaves. In ACM SIGGRAPH 2006 Courses, 5.

36

Wang, X., Zhao, C., Lu, S., & Guo, X. (2009). Survey on Modeling and Visualization of Plant Leaf Color.

Third International Symposium on Plant Growth Modeling, Simulation, Visualization and

Applications (PMA) (pp. 417-424). IEEE.

Weber, J., & Penn, J. (1995). Creation and rendering of realistic trees. In Proceedings of the 22nd

annual conference on Computer graphics and interactive techniques (pp. 119-128). ACM.

Zakaria, M., & Shukri, S. (2007). A sketch-and-spray interface for modeling trees. In Smart Graphics,

pp. 23-35.

1

APPENDIX

A. USER INTERFACE

A.1. SKETCH INTERFACE

Figure 18: Sketch Interface

This is the sketch interface at the first stage of sketching, before validation, After validation, the

parameters box becomes available, and after setting the parameters, the create box can be

interacted with. This is intended to make sure the user has a well-formatted model before the

generation starts.

In the file menu, the user can create a new leaf or open one from a file.

A.2. PARAMETER SELECTION INTERFACE

GROWTH PARAMETER TAB

2

Figure 19: Growth Parameter Panel

This panel allows the user to set the grow parameters of the leaf. Each variable is given a

maximum and minimum value, and the final value sent through to generation is taken

randomly from between these two. The form is designed so that each parameter can only be

set between two values where the parameter is well defined. Additionally the form checks

and ensures that the minimum is below the maximum.

3

 COLOUR SELECTION TAB

Figure 20: Colour Parameter Panel

This panel allow the user to pick the colour type and variation. For each texture, the main colour

is shown, with its potential variation between the two colours. Underneath is the colour relating

to the colour type, which is off for uniform. This colour also has a range and a potential colour

range below it. The spread distance determines how far the effect spreads from its source.

To the right of a parameter is the preview blending of the effect for the middle potential colour

value of the parameters.

A.3. FOLIAGE CREATION INTERFACE

Figure 21: Foliage Creation Interface

4

This is the foliage creation interface. It allows the user to specify a tree to build, as well as how many

leaves per end point, how far they spread from each other, and the size (as a percent of the tree).

On the right, the user selects the leaf materials he wishes to use and the ratio that they should

appear on the tree. The percentage chance of a being used on a tree is its ratio/sum(all ratios)

B. EXPLANATION OF PARAMETERS

B.1. TEXTURE PARAMETERS

The parameters used for texture creation can be split into two categories, listed below. To

facilitate variability between leaves in the same creation run, the parameters (excluding

growth and colour type) are given with a maximum and minimum, from which the final

value is taken randomly for each new leaf. These parameters are used to define the

structure and shape of a leaf, when provided along with the outline of the leaf retrieved

from the sketch and a point representing the root of the leaf, the point at which the veins

start their growth. All points that define the outline are stored as vectors from the root

point, which allows the algorithm to grow the leaf by moving the outline out from the root

node along the vectors that define the outline.

B.2. GROWTH AND VENATION PARAMETERS

These parameters control the way the leaf grows from its starting state to the final leaf size.

This affects the way the veins on the leaf are formed, and thus the parameters in this

category are the ones that directly affect the venation process.

GROWTH TYPE

This parameter defines how the area inside the leaf changes per growth step. The four

options are none, marginal, isotropic, and anisotropic.

For the none growth type, the leaf outline remains fixed at every step at its final size, the size

of the original sketch.

Marginal growth increases the area of the leaf at each step by increasing the area at the

borders of the leaf. This results in the outline of the leaf being moved outward at each step

without moving any of the vein nodes or auxin sources already placed in the leaf.

For isotropic growth, the area of the leaf is increased every step by the same factor in both

x- and y- coordinates. However, unlike marginal growth, the contents of the leaf that are

already in place are scaled along with the leaf, causing the vein nodes and auxin sources to

expand out from the root along with the leaf outline.

Anisotropic growth is similar to isotropic growth, except that the x- and y- growth rates are

decoupled, allowing for different growth rates along either axis.

TOTAL, HORIZONTAL AND VERTICAL GROWTH

This parameter sets the number of steps required to grow from the starting state to the final

inputted sketch. Larger values for the growth rate correspond with smaller changes in the

area of the leaf per step, which in turn tends to create veins that are closer together, as well

5

as veins that branch more often, as branching happens on a per-step basis. Conversely,

smaller values for growth create a less packed leaf, with less tertiary veins.

When the growth type is marginal or none, there runs the danger of veins not reaching the

end of the leaf if growth is too small. The growth rate is a singular value for Marginal and

Isotropic growth, and is therefore represented by Total Growth. The distance travelled by

each point in the outline per step is calculated as a function of the starting and ending

coordinates, as well as the number of steps. Specifically, for a growth rate, starting point at

step 0 , and end point at step G , and r, the root node, the position at step t can be

found using the following formula:

where

Anisotropic growth requires the growth rates for both x- and y-coordinates, and thus has

two inputs, Horizontal and Vertical Growth, Gh and Gv. This means that the number of steps

taken to grow horizontally differs from the amount of steps vertically. The solution

suggested in (Runions, Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz, 2005) works

well for an input of the starting outline, but does not help with this system’s format.

The solution is to take Gh and Gv, and find the highest. This is then made the total amount of

steps Gt. The difference between the highest and the lowest is the number of steps the

other growth rate does not complete. Since the end result of this growth is defined, it must

be that the lower growth steps started at (highest-lowest) steps closer to their goal.

If Gh < Gv, then Gt = Gv ,and the starting point for each vector v in the outline is calculated

as a function of the end value , growth steps , and , , the

components of

 (distance on axis per total steps) below:

Otherwise, If Gv < Gh , Gt = Gh and

and therefore p at step t is

This results in an initial shape that is deformed in such a way that when it is grown with the

correct respective x- and y- growth rates, the original sketched outline is the result of the

final step.

6

The growth type none defines a leaf with no change in area over the total number of steps,

and as such every point in the outline is constant for every step:

STARTING GROWTH STEP

This parameter controls the step that algorithm starts on. For values close to the total

growth, the leaf veins tend to be long and straight, growing steadily until they reach the

initial size of the leaf before branching out. Conversely, smaller values will create less

straight venation.

SCALE

Scale controls what proportion of the steps are completed before the algorithm stops. The

scale is measured between 0 and 1, with 0 representing no steps, while 1 represents all of

the steps being completed. If scale is set to less than 1, this represents a leaf that is part-way

through its growth, and is useful for representing budding leaves. It can also be used to

ensure a size variation in the leaves produced, however if scale is too small, the end result

can be leaves with veins that do not sufficiently span the leaf, much like if starting growth

step is set too high, the algorithm lacks to the steps to create the correct structure.

AUXIN SPAWN RATE

This parameter controls the number of auxin points spawned per step. For isotropic and

anisotropic growth, the parameter given is converted into , the number of auxin to spawn

at a particular step, by taking the value x provided, along with the total growth steps G, and

the leaf area at step t, as follows:

This equation is taken from (Runions, Fuhrer, Lane, Federl, Rolland-Lagan, & Prusinkiewicz,

2005), and is an approximation of the equations set out by (Judd, Campbell, Kellogg,

Stevens, & Donoghue, 1999) in their paper on leaf phylotaxia.

When the leaf is set to the marginal or none growth type, all of the auxin are placed before

the first step starts, to fill the area of the leaf at the final step. This is done for efficiency

reasons, as marginal growth requires auxin to be placed only in the area gained by the

growth in the previous step, which is expensive to calculate. If the auxin are already placed,

it costs far less to simply include them as they enter the expanding outline. For none, the

leaf does not grow, so it is required that auxin are placed beforehand.

High values for spawn rate will cause larger amounts of branching in the veins as the veins

find more targets to grow toward. This parameter also has the greatest effect on

performance, as high values can often spawn thousands of auxin per step, drastically

increasing computation time, without necessarily increasing realism.

AUXIN SPAWN DISTANCE

7

This value is the minimum straight-line distance that any auxin can spawn from any other

auxin. High values cause less auxin to spawn, and also spread out the auxin, resulting in

thinner, longer venation.

VEIN SPAWN DISTANCE

This value is the minimum straight-line distance that any auxin can spawn from any vein.

High values cause auxin to spawn toward the edge of the edge of the leaf area, creating vein

with less branching, as it is more likely that auxin will share a closest vein node when they

toward the edges, attracting nodes near the ends of the veins.

AUXIN KILL DISTANCE

This value is the maximum straight-line distance an auxin source can exist from a vein. Large

values cause shorter vein branches, as veins kill auxin before they can grow further toward

the auxin source.

B.3. COLOURATION AND TEXTURING PARAMETERS

These parameters the colour and light interaction properties of the leaf. Once the basic vein

structure has been created, the colouration can then occur. The colour spectrum used in this

paper is stored and calculated as HSV (Hue, Saturation, Value), rather than traditional RGB

(Red, Green, Blue) because this better suits the gamut and interactions between leaf

colours, primarily the presence and decay of chlorophyll (green), xanthophyll (yellow),

carotene (orange) and anthocyanin (red or purple). See section 3.3 for more details on their

interactions.

The colour parameters are specified with variation, similarly to the integer and real number

parameters. The method used to specify this variation is explained along with the rest of the

user interface in the appendix A.2.

COLOUR TYPE

This parameter determines which colouration algorithm will be used. The choices listed are

based on several common colouration schemes found in tree and bush leaves (Sanger,

1971). The options are uniform, colour from veins, colour from edges, and speckled.

All options, excepting uniform, take in three parameters. These are base colour, the overall

colour of the leaf; alternate colour, the colour that applies specifically to the scheme; and

intensity, which is the radius of effect for a scheme.

Uniform colour specification uses only one colour parameter, the base leaf colour. This

colour is spread over the entire area of the leaf before the veins are drawn. This colour

pattern imitates many of the common leaves in nature, where there are no significant colour

variations over a single leaf. (Wang, Zhao, Lu, & Guo, 2009)

Colour from veins takes two colour parameters, the base colour, and the alternate colour.

The base colour is applied over the entire leaf, after which the alternate colour is spread out

from the veins. Each vein node is radiates out colour from itself out to a maximum radius of

intensity*vein width, the colour at the points surrounding the vein node are altered from

8

their current colour , which may differ from the base colour due to previous nodes, as a

function of their distance from the vein node as follows:

This creates spreading colour that is stronger at larger veins and smaller at the tertiary veins.

This colouration is congruent to several types of leaves, some with natural colour

differentiation close to the root, and others in the process of autumnal decay (Chiba,

Ohshida, Muraoka, & Saito, 1996). During decomposition, several leaf types, including those

of the oak and maple, release acids contained in the veins into the leaf surface. This action

kills the green chlorophyll present, resulting in a change of colour outward from the veins as

it spreads.

Colour from edges applies the base colour over the entire leaf and then radiates colour out

from each of the edge nodes into the leaf with a maximum radius defined by the intensity.

The equation for the alteration of colour at any point within the maximum radius is similar

to that of colour from veins, with the maximum radius set to the intensity value. Colour from

edges is used to model both advanced stages of decomposition, when only the edges still

contain chlorophyll, as well as instances where leaves have suffered damage, either through

excessive rain, which causes rot and discolouration to the outside of a leaf, or frost damage.

There are also leaves which naturally contain this colouration.

Speckled is the last option. It applies the base colour to the leaf and then places a number of

points into the leaf using a dart-throwing algorithm (the same used for auxin placement).

The number of points placed is dependent on the auxin spawn rate value divided by 10. The

alternate colour is then spread out from each point to a maximum radius set to the intensity

value. The equation for alteration of colour with this radius is the same as that of colour

from edges.

Any option not chosen is still implemented, however it is done using a colour just offset from

the base colour. This gives helps prevent the leaf from looking one-dimensional, and follows

from the work done in (Rodkaew, Chongstitvatana, Siripant, & Lursinsap, 2003), with noise

to simulate small veins not present in the vein model.

FRONT AND BACK TEXTURE COLOUR

These parameter sets control the front and back colour parameters for the leaf, as used in

the colouration types above. It is typical for leaves to be a lighter shade underneath than on

top, due to the chlorophyll build up near where the sun hits the leaf. (Judd, Campbell,

Kellogg, Stevens, & Donoghue, 1999) However, this is not universal, so the user has the

ability to set the top and bottom colour variations independently. The colouration patterns

are kept the same for both top and bottom, as veins and colouration elements run through

the entire leaf and affect both top and bottom in a similar manner, if not to the same

magnitude.

There is a danger of nonsensical leaves being produced, should the user specify too much

variation for each texture. This can result in colours from the front and back not matching

9

up. This is a small risk however, as leaves for a single tree tend to exhibit very small

variations in colour between leaves. Should the user desire vastly differing colours, it is

advisable to create each in a different sequence, and join the leaves together again during

the foliage step. This is trivial to achieve using the same variables.

LEAF SPECULARITY

This leaf controls how shiny the leaf is on a scale of 0 to 1, where 0 represents a completely

matte leaf, and 1 represents a completely shiny leaf (akin to a very clean car). Note that this

shininess is different to reflectiveness, as the leaf produces a white highlight as a result of

direct lighting, rather than reflecting any image.

This value imitates the build-up of waxes and oils on the leaf surface, which then deflect and

absorb UV rays, protecting the leaf (Weber & Penn, 1995). This value is given through to the

final leaf material to specify the leaf’s reaction to light when placed into a model. The value

is taken to a third when applied to the underside of the leaf, to account for the lessened

amount of oils on the side away from the sun. This value is a simple heuristic taken from the

average of the values given in (Judd, Campbell, Kellogg, Stevens, & Donoghue, 1999).

LEAF ROUGHNESS

Leaf roughness controls the scale of the bump map that corresponds to the minor geometric

detail that is not included in the leaf mesh constructed later. This scale is from 0 to 1, where

0 represents a perfectly smooth leaf, and 1 represents a very rough one. Even at a scale of 1,

the leaf is not overly rough, this is because any roughness above this point should be

modelled macroscopically in the mesh. The included height detail, such as damage or the

effect of veins is baked (written) onto a special texture known as a height map. This height

map contains a value for each picture in the texture representing the height of the pixel at

this point. When loaded into modelling software, this height map is called a bump map and

informs the software to create shadows on the texture as if there were ridges and

depressions on the leaf.

The height maps are written into the red channel of a new texture, and one exists for each

texture on the leaf, top and bottom.

The vein height is calculated using a heuristic assumption that leaves contain topologic noise

(they are not perfectly flat), and that the veins are slightly indented into the leaf at the top,

and come out above the leaf at the bottom, based on evidence from (Judd, Campbell,

Kellogg, Stevens, & Donoghue, 1999).

C. SAMPLE FILES

C.1. SAMPLE .MTL FILE
newmtl leaf_4_top
Ka 0.0435 0.0435 0.0435
Kd 0.6
Ks 0.5
illum 2
Ns 125

map_Ka -clamp on -s 1 1 1 -o 0 0 0 -mm 0 1 leaf_4_top.png
map_Kd -clamp on -s 1 1 1 -o 0 0 0 -mm 0 1 leaf_4_top.png

10

bump -clamp on -imfchan r -s 1 1 1 -o 0 0 0 -bm 1 leaf_4_topN.png

newmtl leaf_4_bottom
Ka 0.0435 0.0435 0.0435
Kd 0.6
Ks 0.25
illum 2
Ns 125

map_Ka -clamp on -s 1 1 1 -o 0 0 0 -mm 0 1 leaf_4_bottom.png
map_Kd -clamp on -s 1 1 1 -o 0 0 0 -mm 0 1 leaf_4_bottom.png
bump -clamp on -imfchan r -s 1 1 1 -o 0 0 0 -bm 1 leaf_4_bottomN.png

This file shows the material file. There are two materials, top and bottom. Each has the

diffuse and ambient texture map set to the leaf texture, and the bump map set to the leaf’s

bump map. The specular values (Ns) are set to the specular parameter.

